Powered By Blogger

oh my god

martes, 4 de enero de 2011

EneRgiA SolAr

La energía solar es la energía que proporciona el sol a través de sus radiaciones y que se difunde, directamente o de modo difuso, en la atmósfera.

En la Tierra, hogar de la humanidad y  tercer planeta del sistema solar, la energía solar es el origen del ciclo del agua y del viento. El reino vegetal, del que depende el reino animal, también utiliza la energía solar transformándola en energía química a través de la fotosíntesis. Con excepción de la energía nuclear, de la energía geotérmica y de la energía mareomotriz (proveniente del movimiento del agua creado por las mareas), la energía solar es la fuente de todas las energías sobre la Tierra.

Gracias a diversos procesos, la energía solar se puede transformar en otra forma de energía útil para la actividad humana: en calor, en energía eléctrica o en biomasa. Por ende, el término “energía solar” se utiliza, con frecuencia, para describir la electricidad o el calor obtenidos a partir de ella.
Las técnicas para capturar directamente una parte de esta energía están disponibles y están siendo mejoradas permanentemente. Se pueden distinguir tres tipos de energías:
  • Energía solar fotovoltaica: Se refiere a la electricidad producida por la transformación de una parte de la radiación solar con una célula fotoeléctrica (es un componente electrónico que, expuesto a la luz (fotones), genera una tensión). Varias celdas están conectadas entre sí en un módulo solar fotovoltaico. Y, después, varios módulos se agrupan para formar un sistema solar para uso individual o una planta de energía solar fotovoltaica, que suministra una red de distribución eléctrica. El término “fotovoltaica” se refiere al fenómeno físico – el efecto fotovoltaico – o bien a la tecnología asociada.
  • Energía solar térmica: Consiste en utilizar el calor de la radiación solar. Se presenta en diferentes formas: centrales solares termodinámicas, agua caliente y calefacción, refrigeración solar, cocinas y secadores solares. La energía solar termodinámica es una técnica que utiliza energía solar térmica para generar electricidad.
  • Energía solar pasiva: El uso más antiguo de la energía solar consiste en beneficiarse del aporte directo de la radiación solar y es la llamada energía solar pasiva. Para que un edificio se beneficie con muy buena radiación solar, se debe tener en cuenta la energía solar en el diseño arquitectónico: fachadas dobles, orientación  hacia el sur y superficies vidriadas, entre otros. El aislamiento térmico desempeña un papel importante para optimizar la proporción del aporte solar pasivo en calefacción y en la iluminación de un edificio.
    Una casa o un edificio que posean energía solar pasiva estarán contribuyendo a un importante ahorro energético.
     Cargadores de baterías, ventiladores, lámparas de jardín, bombas hidráulicas… Hoy en día, casi todo puede funcionar con energía solar. Ya son muchos los que llevan en su bolso un GPS equipado con un cargador solar y los paneles solares fotovoltaicos aparecen en unos cuantos techos.
Indispensable para la vida en la Tierra, el sol puede ofrecernos muchos otros servicios: calefaccionar nuestros hogares, suministrar energía a los lugares más remotos, etc.

Ge0tErMiA

El calor de la Tierra es la energia termal acumulada bajo la superficie de la tierra en zonas de agua de alta presion, sistemas de vapor o de agua caliente y rocas calientes.

La energia termal usada consiste en parte de la corriente permamente del calor desde el nucleo de la tierra, a tràves del manto y hasta la superficie donde la energìa se esta desperdiciando hacia la atmòsfera.
La otra parte forman procesos de desintegración radiactiva que suceden naturalmente en el manto y liberan energía.
La explotación de energía geotérmica se puede separar en geotermia cerca de la superficie y geotermia de alta profundidad. Mientras la geotermia cerca de la superficie está explotado con colectores y sondas instalados en la tierra (profundidad aproximadamente 100 -150 m) para suministrar edificios individuales (o complejos de edificios), la explotación de alta profundidad ofrece la posibilidad de proyectos de suministro de energía más largos, incluyendo la generación de energía eléctrica.

La energía hidrotérmica es un caso especial porque éste usa capas con agua (acuíferos) en alta profundidad. Esta opción necesita por lo mínimo dos perforaciones (perforación de producción y perforación de re-inyección) porque el agua termal producida debe ser re-inyectado en la misma capa después de enfriarlo.

Tipos de yacimientos geotérmicos según la temperatura del agua
  • Energía geotérmica de alta temperatura. La energía geotérmica de alta temperatura existe en las zonas activas de la corteza. Esta temperatura está comprendida entre 150 y 400 °C, se produce vapor en la superficie y mediante una turbina, genera electricidad. Se requieren varios condiciones para que se dé la posibilidad de existencia de un campo geotérmico: una capa superior compuesta por una cobertura de rocas impermeables; un acuífero, o depósito, de permeabilidad elevada, entre 0,3 y 2 km de profundidad; suelo fracturado que permite una circulación de fluidos por convección, y por lo tanto la trasferencia de calor de la fuente a la superficie, y una fuente de calor magmático, entre 3 y 15 km de profundidad, a 500-600 °C. La explotación de un campo de estas características se hace por medio de perforaciones según técnicas casi idénticas a las de la extracción del petróleo.
  • Energía geotérmica de temperaturas medias. La energía geotérmica de temperaturas medias es aquella en que los fluidos de los acuíferos están a temperaturas menos elevadas, normalmente entre 70 y 150 °C. Por consiguiente, la conversión vapor-electricidad se realiza con un rendimiento menor, y debe explotarse por medio de un fluido volátil. Estas fuentes permiten explotar pequeñas centrales eléctricas, pero el mejor aprovechamiento puede hacerse mediante sistemas urbanos reparto de calor para su uso en calefacción y en refrigeración (mediante máquinas de absorción)
  • Energía geotérmica de baja temperatura. La energía geotérmica de temperaturas bajas es aprovechable en zonas más amplias que las anteriores; por ejemplo, en todas las cuencas sedimentarias. Es debida al gradiente geotérmico. Los fluidos están a temperaturas de 50 a 70 °C.
  • Energía geotérmica de muy baja temperatura. La energía geotérmica de muy baja temperatura se considera cuando los fluidos se calientan a temperaturas comprendidas entre 20 y 50 °C. Esta energía se utiliza para necesidades domésticas, urbanas o agrícolas.
Las fronteras entre los diferentes tipos de energías geotérmicas es arbitraria; si se trata de producir electricidad con un rendimiento aceptable la temperatura mínima está entre 120 y 180 °C, pero las fuentes de temperatura más baja son muy apropiadas para los sistemas de calefacción urbana.

El aprovechamiento de la energia gotermica se hacer por  medio de tres tipos de plantas:

  • Plantas a vapor en seco : se toma el vapor de las fracturas en el suelo y se pasa directamente por una turbina, para mover un generador
  • Plantas flash: se obtiene agua muy caliente, generalmente a mas de 200ºC, y se separa la fase vapior en separadores vapor/agua, y se mueve una turbina con el vapor.
  • Plantas binarias:el agua caliente fluye atraves de intercambiadoresde calor, haciendo hervir un fluido organico que luego girar la turbina.


La geotermia en México
A finales de la década de los cuarentas, el ingeniero Luis de Anda, de la Comisión Federal de Electricidad, se interesó en aplicar las técnicas de exploración y explotación utilizadas en el campo geotérmico de Larderello (Italia). Actualmente, México ocupa el tercer lugar mundial en explotación de la geotermia para generar electricidad, la capacidad instalada es de 953 megawatts (MW) (1MW = mil kilowatts), lo cual significa 3% de la generación eléctrica del país,7 en 4 campos geotérmicos operados por la Comisión Federal de Electricidad. Cuando los fluidos geotérmicos son de alta temperatura (>180 °C) se extraen del subsuelo por medio de pozos y el vapor se utiliza directamente en las turbinas de generación para producir electricidad. Las aplicaciones directas del calor geotérmico de recursos termales de temperatura media y baja (< 180 °C) se han limitado a baños termales y a algunos proyectos piloto, pero considerando que existen más de 1,300 sitios en la república con manifestaciones hidrotermales es posible calcular un gran potencial tanto en usos directos como en la generación eléctrica mediante sistemas no convencionales de ciclo binario, denominados así porque en ellos se utiliza el fluido geotérmico como fluido primario el cual se hace pasar por un intercambiador de calor, en donde se vaporiza un fluido secundario que, una vez en forma de vapor, se envía a la turbina para generar electricidad.


http://www.youtube.com/watch?v=4OWwWr2TiQY
  

BIOCOMBUSTIBLES


Se entiende por biocombustible a aquellos combustibles que se obtienen de biomasa, es decir, de organismos recientemente vivos (como plantas) o sus desechos metabólicos (como estiércol).
Recientemente ha surgido un gran interés por los biocombustibles, principalmente debido a que gobiernos pretenden disminuir su dependencia de los combustibles fósiles y así lograr mayor seguridad energética. Además, se mencionan diversas ventajas de los biocombustibles con respecto a otras energías, como la menor contaminación ambiental, la sustentabilidad de los mismos y las oportunidades para sectores rurales.
Los biocombustibles pueden reemplazar parcialmente a los combustibles fósiles. En comparación con otras energías alternativas, como la proporcionada por el hidrógeno, el reemplazo de los combustibles fósiles por biocombustibles en el sector de transporte carretero puede ser realizado con menores costos, debido a que no requieren grandes cambios en la tecnología actualmente utilizada, ni tampoco en el sistema de distribución. Utilizar otro tipo de energía, como la obtenida a través del hidrógeno, que se basa en una tecnología totalmente distinta, requeriría grandes cambios en el stock de capital. Esto no implica que se deban descartar nuevas fuentes de energía, sino que los biocombustibles serán los que tendrán más crecimiento en el corto plazo.
Tanto los combustibles fósiles como los biocombustibles, tienen origen biológico. Toda sustancia susceptible de ser oxidada puede otorgar energía. Si esta sustancia procede de plantas, al ser quemada devuelve a la atmósfera dióxido de carbono que la planta tomó del aire anteriormente. Las plantas, mediante la fotosíntesis, fijan energía solar y dióxido de carbono en moléculas orgánicas. El petróleo es energía proveniente de fotosíntesis realizada hace millones de años concentrada. Al provenir de plantas de hace millones de años, su cantidad es limitada. En el caso de los biocombustibles, la sustancia a ser quemada proviene de fotosíntesis reciente, por eso se afirma que la utilización de biocombustibles no tiene impacto neto en la cantidad de dióxido de carbono que hay en la atmósfera. Algunos la consideran energía renovable en el sentido que el ciclo de plantación y cosecha se podría repetir indefinidamente, teniendo en cuenta que no se agoten los suelos ni se contaminen los campos de cultivo.
Clases de biocombustibles
Las fuentes de bioenergía pueden ser biomasa tradicional quemada directamente, tecnologías a base de biomasa para generar electricidad, y biocombustibles líquidos para el sector de transporte.
- La biomasa tradicional es utilizada en países subdesarrollados, principalmente en zonas rurales. Esta energía es neutra en emisiones de CO2 (utiliza fotosíntesis reciente), pero tiene elevados costos ambientales, sanitarios y económicos.
- Con respecto a la biomasa para generar electricidad, este sistema es utilizado en países industrializados con elevados recursos forestales, que utilizan madera para generar electricidad.
- Los biocombustibles líquidos proporcionan actualmente aproximadamente la energía equivalente a 20 millones de toneladas de petróleo (lo que equivale al 1% del combustible utilizado mundialmente para transporte por carretera) [Comité de Seguridad Alimentaria Mundial 2007].
Los biocombustibles que mas se utilizan son el etanol y el biodiesel. El etanol puede ser utilizado en motores que utilizan nafta, mientras que el biodiesel puede ser utilizado en motores que utilizan gasoil.
El etanol es un biocombustible a base de alcohol, el cual se obtiene directamente del azúcar. Ciertos cultivos permiten la extracción directa de azúcar, como la caña azucarera (Brasil), la remolacha (Chile) o el maíz (Estados Unidos). Sin embargo, prácticamente cualquier residuo vegetal puede ser transformado en azúcar, lo que implica que otros cultivos también pueden ser utilizados para obtener alcohol. Aunque con la tecnología disponible actualmente este último proceso es muy costoso, se pronostica que ocurran avances en este sentido (las llamadas tecnologías de segunda generación).
En el caso de los motores diesel, se pueden utilizar biocombustibles obtenidos a partir de aceites o grasas. Ciertas plantas como la soja o el girasol, son las que mas eficientemente producen aceites que pueden ser utilizados como biocombustibles directamente, o pueden ser procesados para obtener un biocombustible mas refinado. La utilización directa de aceites vegetales es posible, pero requiere de modificaciones en el motor. El sistema mas habitual es la transformación de los aceites mediante un proceso químico que permite la utilización del biocombustible en un motor diesel sin modificar.
Impacto de los biocombustibles en la seguridad alimentaria y la provisión de energía de sectores carenciados
Además de tener impacto en las relaciones de poder entre los países, regiones y grupos económicos, y en la calidad del medio ambiente, se plantea la cuestión cómo impactará la producción de biocombustibles en la disponibilidad y el acceso a los alimentos, especialmente en los sectores carenciados. Las relaciones son intrincadas y en la bibliografía se pueden encontrar argumentos a favor y en contra.
El aumento en la producción de biocombustibles genera elevadas demandas sobre la base de los recursos naturales, con posibles consecuencias negativas, tanto ambientales como sociales. [Comité de Seguridad Alimentaria Mundial 2007]. Dado que los biocombustibles se producen a base de alimentos o bien compiten por la tierra que puede ser utilizada para la producción de alimentos, los impactos en los mercados de alimentos son directos. Un aumento en la demanda de biocombustibles puede producir
- un aumento en el precio de los cultivos energéticos.
- un aumento en el precio de otros cultivos.
- un aumento en el precio de los productos que compiten por insumos con los combustibles energéticos (por ejemplo carne).
- una reducción en el precio de los subproductos de la producción de biocombustibles (por ejemplo glicerina).
Al mismo tiempo, la producción de biocombustibles puede demandar grandes cantidades de agua en algunos casos, lo que puede disminuir la disponibilidad de agua para uso doméstico, amenazando la salud y la seguridad alimentaria de personas. (FAO CEPAL 2007).
Por otra parte, se deben analizar los potenciales beneficios para las poblaciones que actualmente tienen dificultades para su provisión de alimentos o energía, beneficios directos en el caso de que sectores carenciados produzcan ellos mismos los biocombustibles. En este caso, se deben tener en cuenta las posibilidades técnicas (necesidades tecnológicas) como económicas (consideraciones de escala, requerimientos de capital, etc.) de que estos sectores se involucren en la producción de biocombustibles.
Como antecedente, se puede mencionar lo sucedido en México a finales de 2006 y principios de 2007. La dieta mexicana utiliza el maíz como un ingrediente principal. Si bien México era autosuficiente en la producción de maíz a comienzos de la década del 80, debido a la aplicación de tratados de libre comercio, políticas desfavorables al sector del agro mexicano, y a subsidios a productores estadounidenses, México pasó de ser autosuficiente a ser importador de gran parte de su consumo de maíz: aproximadamente el 30% del maíz amarillo y el 25% del maíz blanco provienen de Estados Unidos.
El índice del precio del maíz a nivel mundial aumentó un 31% entre julio de 2006 y junio de 2007. Entre las causas de este aumento se encuentra la caída de la cosecha estadounidense debido a la sequía, pero también en la mayor demanda de maíz para la producción de etanol. El principal exportador de maíz es Estados Unidos, que redujo enormemente sus saldos exportables debido a la mayor demanda interna de maíz para la producción de etanol. La demanda para producir etanol en Estados Unidos ha pasado de 25 millones de toneladas para el 2003, a cerca de 54 millones de toneladas para el 2007 (20% de la producción interna). El aumento del precio del maíz, llevó a productores ganaderos a buscar forrajes alternativos, lo que impulsó también el precio de otros granos (FAO 2007).
Como consecuencia del aumento de los precios internacionales del maíz, el precio interno de productos alimenticios derivados de este grano elevó fuertemente, teniendo consecuencias negativas especialmente en los mexicanos de bajos recursos, que utilizan en mayor proporción el maíz.

MaTeRiAlEs PaRa CoNsTrUcCiOn

 

El Hidrógeno: el combustible del futuro

Esquema de un átomo de hidrógenoLa tecnología del hidrógeno puede ser una de las alternativas energéticas al petróleo que permita sortear los problemas ambientales que plantea el actual uso de combustibles fósiles, que es insostenible, pero sólo en el plazo de varias décadas, y a condición de que se invierta masivamente desde ahora.
Históricamente y desde hace algo más de doscientos años, el manejo por parte del hombre de formas de energía de mayor densidad que la leña, como el carbón, luego el petróleo y ahora el gas natural han brindado junto a la tecnología de conversión del calor en trabajo mecánico y electricidad, aquellas otras tecnologías que facilitan y permiten acceder a superiores servicios de transporte, fuerza motriz, comunicaciones, confort en el hogar y perfeccionamiento del comercio.
El conjunto de tecnologías especialmente desarrolladas en el siglo XX, ha elevado el nivel de consumo de energía per capita en la mayoría de los países. Ese parámetro se toma como sinónimo de bienestar.
También, esa mayor cantidad de energía permite incrementar la producción de alimentos, considerando que el riego y los fertilizantes son en buena medida el resultado del dominio energético dentro del bagaje cultural evolutivo de la humanidad, hechos que han posibilitado el incremento vertiginoso de la población global. Toda esta bonanza que parecía orientada hacia un destino continuo y mejor, colapsa y resulta inconveniente para el interés común.
Afortunadamente, el ingenio humano, impulsado muchas veces por la necesidad de encontrar alternativas, logrará en las fuentes renovables directas o derivadas del sol, como el viento, la hidráulica, la geotermia y la biomasa, el recurso energético primario que le permita mantener el consumo per capita e incluir al tercio de población mundial, hoy todavía carente de servicios energéticos. Esto permitiría que el hombre no sea dependiente exclusivo de la tracción a sangre o la leña, cuando se tiene, empleada directamente como fuente de calor.
Así, aparece el hidrógeno, elemento en estado gaseoso en condiciones ambientales normales, pero que es factible de almacenamiento, transporte y distribución, lo que permite su aplicación a cualquier segmento de la demanda.
El hidrógeno fue descubierto por el científico británico Henry Cavendish, en 1776, quién informó de un experimento en el que había obtenido agua a partir de la combinación de oxígeno e hidrógeno, con la ayuda de una chispa eléctrica. Como esto elementos, no eran conocidos, los denomino “aire sustentador de la vida” y “aire inflamable” respectivamente. El químico francés Antoine Lauren Lavoisier consiguió repetir con éxito el experimento en 1785 y dio el nombre de oxígeno al “aire sustentador de la vida” y el de hidrógeno al “aire inflamable”.
El hidrógeno es el elemento más ligero, más básico y más ubicuo del universo. Cuando se utiliza como fuente de energía, se convierte en el combustible eterno. Nunca se termina y, como no contiene un solo átomo de carbono, no emite dióxido de carbono. El hidrógeno se encuentra repartido por todo el planeta: en el agua, en los combustibles fósiles y en los seres vivos. Sin embargo, raramente aparece en estado libre en la naturaleza, sino que tiene que ser extraído de fuentes naturales.
El hidrógeno es un elemento químico que contiene energía y que puede ser almacenado en forma líquida o gaseosa. Es 14 veces más ligero que el aire, incoloro, inodoro y no tóxico, ya que su único producto luego de la combustión es agua.
El hidrógeno no es fuente primaria de energía, no es un combustible que podamos extraer directamente de la tierra como el gas natural.
La fuente más común de hidrógeno es el agua. Se obtiene por la descomposición química del agua en oxígeno e hidrógeno partir de la acción de una corriente eléctrica (electrólisis) generada por fuentes de energía renovable (solar fotovoltaica, eólica, etc.). Este proceso divide el agua, produciendo oxígeno puro e hidrógeno.
El hidrógeno obtenido puede ser comprimido y almacenado en celdas por varios meses hasta que se lo necesite. El hidrógeno representa energía almacenada, se puede quemar como cualquier combustible para producir calor, impulsar un motor, o producir electricidad en una turbina.
¿Que pasaría si todos los vehículos obtuvieran de repente su energía a partir de células de combustible basadas en el hidrógeno?
Distintos estudios sostienen que tal conversión mejoraría la calidad del aire, la salud humana y el clima, sobre todo si se utilizara el viento en la generación de la electricidad necesaria para extraer el hidrógeno del agua en un proceso sin contaminación.
De forma semejante a cómo se bombea el gas en tanques, el hidrógeno se bombearía en células de combustible que se basan en procesos químicos y no en la combustión, para impulsar los vehículos. Cuando el hidrógeno fluye a través de los compartimientos de la célula de combustible, reacciona con el oxígeno para producir agua y energía.
Funcionamiento de una celda de combustible a hidrógeno
Tal conversión podría evitar anualmente millones de casos de enfermedades respiratorias y decenas de miles de casos de hospitalización.
La conversión de todos los vehículos actuales en vehículos alimentados por células de combustible recargadas por el viento, podría hacerse a un costo de combustible comparable con el de la gasolina, e incluso menor si se consideran los efectos de la gasolina sobre la salud.
Las ventajas de utilizar el hidrógeno como energía son:
- No produce contaminación ni consume recursos naturales: El hidrógeno se toma del agua y luego se oxida y se devuelve al agua. No hay productos secundarios ni tóxicos de ningún tipo que puedan producirse en este proceso.
- Es muy seguro: Los sistemas de hidrógeno tienen una historia de seguridad muy impresionante. En muchos casos, el hidrógeno es más seguro que el combustible que está siendo reemplazado. Además de disiparse rápidamente en la atmósfera si se fuga, el hidrógeno, en contraste con los otros combustibles, no es tóxico en absoluto.
- Tiene alta eficiencia: Las celdas de combustible convierten la energía química directamente a electricidad con mayor eficiencia que ningún otro sistema de energía.
- Tiene un funcionamiento silencioso: En funcionamiento normal, la celda de combustible es casi absolutamente silenciosa.
- Larga vida y poco mantenimiento: Aunque las celdas de combustible todavía no han comprobado la extensión de su vida útil, probablamente tendrán una vida significativamente más larga que las máquinas que reemplacen.
- Permite la modularidad: Se puede elaborar las celdas de combustible en cualquier tamaño, tan pequeñas como para impulsar una carretilla de golf o tan grandes como para generar energía para una comunidad entera. Esta modularidad permite aumentar la energía de los sistemas según los crecimientos de la demanda energética, reduciendo drásticamente los costos iniciales.
Lo novedoso de esta tecnología es que la producción de hidrógeno es realizada a partir de fuentes de energías renovables.
La economía del hidrógeno posibilita una enorme redistribución del poder, con consecuencias trascendentales para la sociedad. El hidrógeno tiene el potencial de poner fin a la dependencia que el mundo tiene del petróleo importado y de ayudar a eliminar el peligroso juego geopolítico que se está dando entre los países musulmanes y los países occidentales. Reducirá drásticamente las emisiones de dióxido de carbono y mitigará los efectos del calentamiento global. Y dado que es tan abundante y existe en todas partes del mundo, todos los seres humanos dispondrán de energía.




MaTeRiAlEs IntElIgEnTeS

Hoy en día, gracias a la popularidad que ha ido adquiriendo a lo largo de estos últimos años, el término “inteligente” se ha adoptado como un modo válido de calificar y describir una clase de materiales que presentan la capacidad de cambiar sus propiedades físicas (rigidez, viscosidad, forma, color, etc.) en presencia de un estímulo concreto.
No existe un consenso a la hora de aplicar este término a un material o estructura, pero si existe un acuerdo en cuanto a ciertos criterios o rasgos comunes que deben presentar los llamados materiales o estructuras inteligentes:
• Estos materiales, de manera intrínseca o embebida, presentan sensores de reconocimiento y medida de la intensidad del estímulo ante el que reaccionará el material.
• A su vez presentan “actuadores”, embebidos o intrínsecos, que responden ante dicho estímulo.
• Para controlar la respuesta de una forma predeterminada presentan mecanismos de control y selección de la respuesta.
• El tiempo de respuesta es corto.
• El sistema regresa a su estado original tan pronto como el estímulo cesa.
Si se tienen en cuenta estos puntos genéricos, se podría adoptar como definición de sistema inteligente la siguiente: “Sistema o material que presenta sensores, ’actuadores’ y mecanismos de control, intrínsecos o embebidos, por los cuales es capaz de sentir un estímulo, de responder ante él de una forma predeterminada en un tiempo apropiado y de volver a su estado original tan pronto como el estímulo cesa”.
En los subsiguientes apartados se describen brevemente los materiales inteligentes más habituales y conocidos.
foto
Materiales “inteligentes”

Materiales con memoria de forma

El efecto de memoria de forma puede describirse como la capacidad de un material para cambiar la forma debido a la aplicación de un estímulo externo.
Bajo el término de materiales con memoria de forma existen cuatro clases diferentes, según la naturaleza, o del material en sí, o del estímulo externo al que responden. Las cuatro clases en las que se pueden dividir son:
  • Aleaciones con Memoria de Forma (Shape Memory Alloys, SMAs).
  • Cerámicas con Memoria de Forma (Shape Memory Ceramics, SMCs).
  • Polímeros con Memoria de Forma (Shape Memory Polymers, SMPs).
  • Aleaciones Ferromagnéticas con Memoria de Forma (Ferromagnetic Shape Memory Alloys, FSMAs).
En el caso de las aleaciones metálicas, el efecto de memoria de forma se basa en la transición que se produce entre dos fases sólidas, una de baja temperatura o martensítica y otra de alta temperatura o austenítica.
El material se deforma en la fase martensítica y recupera de forma reversible sus dimensiones originales mediante el calentamiento por encima de una temperatura crítica de transición.
Por otro lado, los polímeros con memoria de forma son materiales poliméricos con la capacidad de recordar su forma original. Este efecto está relacionado con la combinación de la estructura y la morfología del polímero junto con el proceso y tecnología de programación de inclusión de la forma empleado. Es decir es necesario un entrenamiento del material para que recuerde una forma determinada.
El primer paso es procesar el polímero para grabar su forma permanente y seguidamente el polímero es deformado fijándose, de ese modo, la forma temporal.
El mecanismo del efecto de memoria de forma en los polímeros puede producirse, no sólo por temperatura, sino también por luz o por reacciones químicas.
A parte de los metales y los polímeros, las cerámicas completan las tres grandes familias de materiales sólidos. Una definición general de cerámica podría ser la siguiente: materiales inorgánicos, no metálicos, que se producen habitualmente empleando arcillas y otros minerales naturales o procesados químicamente. Estas cerámicas inteligentes, normalmente, son cerámicas basadas en ZrO2, pero existen otros ejemplos basados en niobato de magnesio o cerámicas perovskitas.
Por último, hay que mencionar la aparición de una nueva clase de materiales que sufren el efecto de memoria de forma bajo la aplicación de diferentes campos magnéticos y que presentan grandes elongaciones (aproximadamente de un 6 por ciento).
En este caso el comportamiento es similar al de las aleaciones con memoria de forma (SMAs) pero el estímulo al que responden, en vez de ser la temperatura, es el campo magnético aplicado. Estos materiales son conocidos como Aleaciones Ferromagnéticas con Memoria de Forma (FSMAs) o Metales Magnetoelásticos.
foto
Representación esquemática del efecto de memoria de forma
foto
Cambio en la estructura cristalina que se produce durante el cambio de fase en las aleaciones con memoria de forma

Materiales electro y magnetoactivos

Estos materiales experimentan cambios en sus propiedades físicas ante la presencia o aplicación de un campo eléctrico o magnético.
Entre estos materiales se encuentran los fluidos “inteligentes”. Estos fluidos presentan la capacidad de cambiar su viscosidad aparente en presencia de un estímulo externo. Se dividen en dos categorías dependiendo de la naturaleza del estímulo al que responden mediante un cambio en sus propiedades reológicas

Fluidos Electroreológicos y Fluidos Magnetoreológicos

Efecto electro reológico se llama al cambio reversible de las propiedades reológicas de un fluido debido a la aplicación de un campo eléctrico. Estos fluidos suelen clasificarse en dos tipos, uno correspondiente a fluidos formados por partículas dispersas y por otro lado los fluidos homogéneos. En el primer caso, el más común, se acepta que el origen de la respuesta electroreológica es debido a la agregación de las partículas en suspensión provocada por la polarización de los materiales. Acerca de los fluidos homogéneos, estos se comportan de igual manera que los anteriores pero, gracias a la ausencia de partículas pueden llegar a ser de gran utilidad para la microtecnología, permitiendo mayores miniaturizaciones.
Por otro lado, los materiales cuyas propiedades reológicas pueden ser variadas mediante la aplicación de campos magnéticos son los denominados materiales magnetoreológicos. En general, un material magneto reológico (MR) se compone de partículas micrométricas magnéticamente permeables suspendidas en un medio no magnético. Bajo el campo magnético se produce una polarización inducida sobre las partículas suspendidas de manera que se forman estructuras con forma de cadena debido a la interacción entre los diferentes dipolos inducidos.
Estas estructuras restringen la movilidad del fluido y consecuentemente se incrementa la viscosidad y se desarrolla una resistencia en la suspensión. Cuanto mayor sea el campo magnético aplicado mayor será la energía mecánica necesaria para romper dichas estructuras, es decir, se genera una resistencia dependiente del campo.
También existe otro tipo de materiales denominados sólidos magnetoreológicos, ya que la matriz en la que se dispersan las partículas férricas es una matriz polimérica sólida, como pueden ser materiales elastoméricos o espumas. Esta matriz, en principio, debe presentar un módulo de Young bajo ya que, de este modo, al presentar flexibilidad permiten cierto movimiento de las partículas férricas llegando a producirse alineamientos de las mismas y así aumentar su resistencia ante la cizalla o la compresión.
El Centro Tecnológico Gaiker lleva trabajando en la investigación de este tipo de materiales magnetoreológicos, tanto fluidos como sólidos, durante varios años, centrando su trabajo en el desarrollo de sistemas de amortiguación para el sector de la industria automovilística. El amortiguador es una pieza clave en la seguridad del vehículo, y cada vez más, se intenta integrar nuevos sistemas de seguridad electrónicos en sintonía con los sistemas de suspensión, frenado y dirección.
A su vez, dentro de los materiales electroactivos se encuentran los materiales piezoeléctricos. A modo de definición simple, el efecto piezoeléctrico es la capacidad que tiene un material para convertir la energía mecánica en energía eléctrica y viceversa. Este efecto se da en ciertos materiales sólidos cristalinos cuyas celdas unidad no poseen centros de simetría (por ejemplo el cuarzo y diferentes cerámicas policristalinas sintéticas).
Existen materiales piezoeléctricos de naturaleza cerámica y polimérica, aunque estos últimos son más escasos y, en muchos casos, se encuentran todavía en fases de investigación y desarrollo. Dentro de estos últimos el más conocido es el polifluoruro de vinilideno (PVDF), aunque estas propiedades piezoeléctricas también se han encontrado en el PVC, el polifluoruro de vinilo, en copolímeros de trifluoroetileno y PVDF, etc, todos ellos polímeros que contienen grupos polares con capacidad de orientarse a fin de generar dipolos internos en la estructura del material.
Por último, dentro de esta categoría de materiales electro y magnetoactivos se encuentran los materiales electroestrictivos y magnetoestrictivos. Los primeros exhiben un esfuerzo mecánico cuando están sometidos a un campo eléctrico sufriendo únicamente procesos de elongación, independientemente de la dirección en la que se aplique el campo eléctrico. En el caso de los magnetoestrictivos, se deforman bajo un campo magnético y generan un campo magnético cuando son sometidos a un esfuerzo mecánico.

Materiales foto y cromoactivos

Los materiales fotoactivos son aquellos en los que se producen cambios de diferente naturaleza como consecuencia de la acción de la luz o que son capaces de emitir luz como consecuencia de algún fenómeno externo.
Los materiales cromoactivos son aquellos en los que se producen cambios de color como consecuencia de algún fenómeno externo como puede ser la corriente eléctrica, radiación UV o temperatura.

Materiales fotoactivos

Entre los materiales fotoactivos que emiten luz, sin que se produzca calor, nos encontramos con los electroluminiscentes, los fluorescentes y los fosforescentes.
  • Electroluminiscentes: son materiales organometálicos basados fundamentalmente en fósforos y fluorocarbonos que emiten luz de diferentes colores cuando son estimulados por una corriente eléctrica.
  • Fluorescentes: son materiales semiconductores que producen luz visible como resultado de su activación con luz UV. El efecto cesa tan pronto como desaparece la fuente de excitación. Los pigmentos fluorescentes a la luz del día son blancos o de color claro mientras que cuando están expuestos a radiación UV irradian un intenso color fluorescente.
  • Fosforescentes: materiales semiconductores que convierten la energía absorbida en luz emitida sólo detectable en la oscuridad, después de que la fuente de excitación ha sido eliminada. Esta emisión de luz puede durar desde minutos hasta horas. La fuente de excitación más efectiva es la radiación UV.
foto
Con campo magnético
foto
Sin campo magnético
foto
foto

Materiales de embalaje




Embalaje

El embalaje es un recipiente o envoltura que contiene productos de manera temporal principalmente para agrupar unidades de un producto pensando en su manipulación, transporte y almacenaje.
Caja de medicamento (embalaje secundario) que contiene envases de tipo blíster.
Otras funciones del embalaje son: proteger el contenido, facilitar la manipulación, informar sobre sus condiciones de manejo, requisitos legales, composición, ingredientes, etc. Dentro del establecimiento comercial, el embalaje puede ayudar a vender la mercancía mediante su diseño gráfico y estructural.
Se establece la diferencia entre:
Envase: es el lugar donde se conserva la mercancía; está en contacto directo con el producto.
Embalaje secundario: suelen ser cajas de diversos materiales envasadcajas de cartón ondulado de diversos modelos y muy resistentes.
Embalaje terciario es el que está destinado a soportar grandes cantidades de embalajes secundarios, a fin de que estos no se dañen o deterioren en el proceso de transporte y almacenamiento entre la fabrica y el consumidor final

Los modelos o tipos de embalaje secundario más habituales son:

Bana
Box palensadora de líquidos
Caja envolvente o Wrap around
Caja expositora
Caja de fondo automático
Caja de fondo semiautomático
Caja de madera
Caja de plástico
Caja con rejilla incorporada
Caja con tapa
Caja de tapa y fondo
Caja de solapas
Cesta
Estuche
Film plástico
Plató agrícola
Saco de papel
Otros elementos del embalaje son:
Cantonera
Acondicionador
Separador

Control de calidad
Para garantizar que el contenido gráfico y de texto del empaque sea de acuerdo al planeado y especificado existen soluciones que de manera automática comparan los archivos digitales contra los impresos en empaques y etiquetas. Los cambios encontrados más frecuentes son inserciones o deleciones de texto o letras, cambios de colores, fuentes, o cambios y desplazamientos en las imágenes. Tales cambios tienen un impacto sobre la calidad y veracidad de la información, lo cual puede dañar la reputación de una compañía y suele producir pérdidas al tener que retirar el lote con dicho defecto. Además los empaques de medicamentos en la Unión Europea deben de tener a partir del 2010 lenguaje Braille en todos sus empaques e insertos con la información del medicamento.